Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 576-80, 2012.
Article in English | WPRIM | ID: wpr-635983

ABSTRACT

This study aimed to investigate infiltration related microRNAs (miRNAs) in bladder urothelial carcinoma (BUC). Twenty patients with BUC were enrolled and divided into 2 groups according to infiltration or not: infiltrating BUC group (n=12) and non-infiltrating BUC group (n=8). Gene chip was used to detect infiltration related miRNAs in the BUC samples. In other recruited 17 patients with BUC who were divided into infiltrating BUC samples (n=14) and non-infiltrating BUC samples (n=3), and in 4 BUC cell lines (EJ, 5637, T24 and BIU-87), the expression of miRNAs was assayed by using reverse transcription-polymerase chain reaction (RT-PCR). In infiltrating BUC group, as compared with non-infiltrating BUC group, there were 7 differentially expressed miRNAs: hsa-miR-29c, hsa-miR-200a, hsa-miR-378, hsa-miR-429, hsa-miR-200c and hsa-miR-141 were up-regulated, while hsa-miR-451 was down-regulated. In the BUC samples, the results of RT-PCR were consistent with those by the miRNA array. In the cancer cell lines, RT-PCR in T24 only revealed the similar expression pattern of miRNAs to that by the miRNA array. It is suggested that infiltration of BUC is related with different expression of miRNAs, which may provide a novel platform for further study on function and action mechanism of miRNAs.

2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 576-580, 2012.
Article in English | WPRIM | ID: wpr-233117

ABSTRACT

This study aimed to investigate infiltration related microRNAs (miRNAs) in bladder urothelial carcinoma (BUC). Twenty patients with BUC were enrolled and divided into 2 groups according to infiltration or not: infiltrating BUC group (n=12) and non-infiltrating BUC group (n=8). Gene chip was used to detect infiltration related miRNAs in the BUC samples. In other recruited 17 patients with BUC who were divided into infiltrating BUC samples (n=14) and non-infiltrating BUC samples (n=3), and in 4 BUC cell lines (EJ, 5637, T24 and BIU-87), the expression of miRNAs was assayed by using reverse transcription-polymerase chain reaction (RT-PCR). In infiltrating BUC group, as compared with non-infiltrating BUC group, there were 7 differentially expressed miRNAs: hsa-miR-29c, hsa-miR-200a, hsa-miR-378, hsa-miR-429, hsa-miR-200c and hsa-miR-141 were up-regulated, while hsa-miR-451 was down-regulated. In the BUC samples, the results of RT-PCR were consistent with those by the miRNA array. In the cancer cell lines, RT-PCR in T24 only revealed the similar expression pattern of miRNAs to that by the miRNA array. It is suggested that infiltration of BUC is related with different expression of miRNAs, which may provide a novel platform for further study on function and action mechanism of miRNAs.


Subject(s)
Humans , Carcinoma , Genetics , Cell Line, Tumor , MicroRNAs , Genetics , Urinary Bladder , Metabolism , Urinary Bladder Neoplasms , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL